什么是相关解析
相关解析就是对总体中确实具备联系的标志实行解析,其主体是对总体中具备因果关系标志的解析。它是描述客观事物相互间关系的密切程度并用适当的统计指标表示出来的历程。在一段时期内出生率随经济水平上升而上升,这说明两指标间是正相关关系;而在另一时期,随着经济水平进一步进展,出现出生率下降的现象,两指标间就是负相关关系。
为了确定相关变量之间的关系,首先应该收集一些数据,这些数据应该是成对的。例如,每人的身高和体重。然后在直角坐标系上描述这些点,这一组点集称为“散点图”。
根据散点图,当自变量取某一值时,因变量对应为一概率分布,如果对于所有的自变量取值的概率分布都相同,则说明因变量和自变量是没有相关关系的。反之,如果,自变量的取值区别,因变量的分布也区别,则说明两者是存在相关关系的。
两个变量之间的相关程度通过相关系数r来表示。相关系数r的值在-1和1之间,但可以是此范围内的任何值。正相关时,r值在0和1之间,散点图是斜向上的,这时一个变量增加,另一个变量也增加;负相关时,r值在-1和0之间,散点图是斜向下的,此时一个变量增加,另一个变量将减少。r的绝对值越接近1,两变量的关联程度越强,r的绝对值越接近0,两变量的关联程度越弱。
相关解析的种类
1、按相关的程度分为完全相关、不完全相关和不相关
1)两种依存关系的标志,其中一个标志的数量变化由另一个标志的数量变化所确定,则称完全相关,也称函数关系。
2)两个标志彼此互不影响,其数量变化各自独立,称为不相关。
3)两个现象之间的关系,介乎完全相关与不相关之间称不完全相关。
2、按相关的方向分为正相关和负相关
1)正相关指相关关系表现为因素标志和结果标志的数量变动方向一致。
2)负相关指相关关系表现为因素标志和结果标志的数量变动方向是相反的。
3、按相关的形式分为线性相关和非线性相关
一种现象的一个数值和另一现象相应的数值在指教坐标系中确定为一个点,称为线性相关。
4、按影响因素的多少分为单相关和复相关
1)如果研究的是一个结果标志同某一因素标志相关,就称单相关。
2)如果解析若干因素标志对结果标志的影响,称为复相关或多元相关。
相关解析的紧要内容
1、确定相关关系的存在,相关关系呈现的形态和方向,相关关系的密切程度。其紧要方式是绘制相关图表和计算相关系数。
1)相关表
编制相关表前首先要通过实际调查取得一系列成对的标志值资料作为相关解析的原始数据。
相关表的分类:简单相关表和分组相关表。
单变量分组相关表:自变量分组并计算次数,而对应的因变量不分组,只计算其平均值;该表特点:使冗长的资料简化,能够更清晰地反映出两变量之间相关关系。双变量分组相关表:自变量和因变量都实行分组而制成的相关表,这种表形似棋盘,故又称棋盘式相关表。
2)相关图
利用直角坐标系第一象限,把自变量置于横轴上,因变量置于纵轴上,而将两变量相对应的变量值用坐标点形式描绘出来,用以表明相关点分布状况的图形。相关图被形象地称为相关散点图。
因素标志分了组,结果标志表现为组平均数,所绘制的相关图就是一条折线,这种折线又叫相关曲线。
3)相关系数
相关系数是按积差方式计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
2、确定相关关系的数学表达式。
3、确定因变量估计值误差的程度。