期权定价模型

期权定价模型概述

期权定价模型的前驱

1、巴施里耶(Bachelier,1900)

2、斯普伦克莱(Sprenkle,1961)

3、博内斯(Boness,1964)

4、萨缪尔森(Samuelson,1965)

期权定价模型进展历程

期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying assets)的选择权。期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。70年代以来,伴随着期权市场的迅速进展,期权定价理论的研究取得了突破性进展。

在国际衍生金融市场的形成进展历程中,期权的合理定价是困扰投入者的一大难题。随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。在过去的20年中,投入者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。

期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器企业就推出了装有根据这一模型计算期权价值程序的计算器。现在,几乎所有从事期权交易的经纪人都持有各家企业出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。

斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在区别刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

1979年,约翰·考克斯(John Carrington Cox)、斯蒂芬·罗斯(Stephen A. Ross)、马克·鲁宾斯坦(Mark Rubinstein)的论文《期权定价:一种简化方式》提出了二项式模型(Binomial Model),该模型建立了期权定价数值法的基础,解决了美式期权定价的问题。

期权定价的方式

(1)Black—Scholes公式

(2)二项式定价方式

(3)危机中性定价方式

(4)鞅定价方式等

期权定价模型与无套利定价

期权定价模型基于对冲证券组合的思想。投入者可建立期权与其标的股票的组合来保证确定报酬。在均衡时,此确定报酬必须得到无危机利率。期权的这一定价思想与无套利定价的思想是一致的。所谓无套利定价就是说任何零投入的投入只能得到零回报,任何非零投入的投入,只能得到与该项投入的危机所对应的平均回报,而不能获得超额回报(超过与危机相当的报酬的利润)。从Black-Scholes期权定价模型的推导中,不难看出期权定价本质上就是无套利定价。

B-S期权定价模型(以下简称B-S模型)及其假设条件

(一)B-S模型有5个重要的假设

1、金融资产收益率服从对数正态分布;

2、在期权有效期内,无危机利率和金融资产收益变量是恒定的;

3、市场无摩擦,即不存在税收和交易成本;

4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);

5、该期权是欧式期权,即在期权到期前不可实施。

(二)荣获诺贝尔经济学奖的B-S定价公式

C=S•N(D1)-L•E-γT•N(D2)

其中:

D1=1NSL+(γ+σ22)Tσ•T

D2=D1-σ•T

C—期权初始合理价格

L—期权交割价格

S—所交易金融资产现价

T—期权有效期

r—连续复利计无危机利率H

σ2—年度化方差

N()—正态分布变量的累积概率分布函数,在此应当说明两点:

第一,该模型中无危机利率必须是连续复利形式。一个简单的或不连续的无危机利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=Er-1。例如r0=0.06,则r=LN(1+0.06)=0853,即100以583%的连续复利投入第二年将获106,该结果与直接用r0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。

期权定价的二项式模型

1979年,科克斯(Cox)、罗斯(Ross)和卢宾斯坦(Rubinsetein)的论文《期权定价:一种简化方式》提出了二项式模型(Binomial Model),该模型建立了期权定价数值法的基础,解决了美式期权定价的问题。

二项式模型的假设紧要有:

1、不支付股票红利。

2、交易成本与税收为零。

3、投入者可以以无危机利率拆入或拆出资金。

4、市场无危机利率为常数。

5、股票的波动率为常数。

假设在任何一个给定时间,金融资产的价格以事先规范的比例上升或下降。如果资产价格在时间t的价格为S,它可能在时间t+△t上升至uS或下降至dS。假定对应资产价格上升至uS,期权价格也上升至Cu,如果对应资产价格下降至dS,期权价格也降至Cd。当金融资产只可能达到这两种价格时,这一顺序称为二项程序。

郑重声明:东方财富网发布此信息的目的在于传播更多信息,与本站立场无关。东方财富网不保证该信息(包含但不限于文字、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关信息并未经过本网站证实,不对您构成任何投资建议,据此操作,风险自担。

扫一扫下载APP

扫一扫下载APP
信息网络传播视听节目许可证:0908328号 经营证券期货业务许可证编号:913101046312860336 违法和不良信息举报:021-61278686 举报邮箱:jubao@eastmoney.com
沪ICP证:沪B2-20070217 网站备案号:沪ICP备05006054号-11 沪公网安备 31010402000120号 版权所有:东方财富网 意见与建议:4000300059/952500