Fama-French三因子模型

Fama-French三因子模型概述

Fama和French 1992年对美国股票市场决定区别股票回报率差异的因素的研究发现,股票的市场的beta值不能解释区别股票回报率的差异,而上市企业的市值、账面市值比、市盈率可以解释股票回报率的差异。Fama and French认为,上述超额收益是对CAPM 中β未能反映的危机因素的补偿。”

Fama-French三因子模型的表达式

Fama和French 1993年指出可以建立一个三因子模型来解释股票回报率。模型认为,一个投入组合(包含单个股票)的超额回报率可由它对三个因子的暴露来解释,这三个因子是:市场资产组合(RmRf)、市值因子(SMB)、账面市值比因子(HML)。这个多因子均衡定价模型可以表示为:

其中Rft表示时间t的无危机收益率;Rmt表示时间t的市场收益率;Rit表示资产i在时间t的收益率;E(Rmt) − Rft是市场危机溢价,SMBt为时间t的市值(Size)因子的模拟组合收益率,HMIt为时间t的账面市值比(book—to—market)因子的模拟组合收益率。

βisihi分别是三个因子的系数,回归模型表示如下:

RitRft = ai + βi(RmtRft) + siSMBt + hiHMIt + εit

Fama-French三因子模型的假设条件

1、理论假设

在探讨Fama—French三因子模型的应用时,是以“有限理性”理论假设为基础。并在此基础上得出若干基本假定:

(1)存在着大量投入者;

(2)所有投入者都在同一证券持有期计划自己的投入资产组合;

(3)投入者投入范围仅限于公开金融市场上交易的资产;

(4)不存在证券交易费用(佣金和服务费用等)及税赋;

(5)投入者们对于证券回报率的均值、方差及协方差具备相同的期望值;

(6)所有投入者对证券的评价和经济局势的看法都一致。

2、统计假设

从模型的表达式可以看出,FF模型属于多元回归模型。其基本假设为:

(1)(RmRf)、SMB、HML与随机误差项u不相关;

(2)零均值假定:;

(3)同方差假定,即的方差为一常量:;

(4)无自相关假定:;

(5)解释变量之间不存在线性相关关系。即两个解释变量之间无确切的线性关系;

(6)假定随机误差项服从均值为零,方差为S正态分布,即。

郑重声明:东方财富网发布此信息的目的在于传播更多信息,与本站立场无关。东方财富网不保证该信息(包含但不限于文字、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关信息并未经过本网站证实,不对您构成任何投资建议,据此操作,风险自担。

扫一扫下载APP

扫一扫下载APP
信息网络传播视听节目许可证:0908328号 经营证券期货业务许可证编号:913101046312860336 违法和不良信息举报:021-61278686 举报邮箱:jubao@eastmoney.com
沪ICP证:沪B2-20070217 网站备案号:沪ICP备05006054号-11 沪公网安备 31010402000120号 版权所有:东方财富网 意见与建议:4000300059/952500