Kendall等级相关系数

Definition

The Kendall tau coefficient (τ) has the following properties:

  • If the agreement between the two rankings is perfect (i.e., the two rankings are the same) the coefficient has value 1.
  • If the disagreement between the two rankings is perfect (i.e., one ranking is the reverse of the other) the coefficient has value −1.
  • For all other arrangements the value lies between −1 and 1, and increasing values imply increasing agreement between the rankings. If the rankings are completely independent, the coefficient has value 0 on average.

Kendall tau coefficient is defined

where n is the number of items, and P is the sum, over all the items, of the number of items ranked after the given item by both rankings.

P can also be interpreted as the number of concordant pairs . The denominator in the definition of τ can be interpreted as the total number of pairs of items. So, a high value of P means that most pairs are concordant, indicating that the two rankings are consistent. Note that a tied pair is not regarded as concordant or discordant. If there is a large number of ties, the total number of pairs (in the denominator of the expression of τ) should be adjusted accordingly.

Tau a, b and c

  • Tau a — This tests the strength of association of the cross tabulations when both variables are measured at the ordinal level but makes no adjustment for ties.
  • Tau b — This tests the strength of association of the cross tabulations when both variables are measured at the ordinal level. It makes adjustments for ties and is most suitable for square tables. Values range from −1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.
  • Tau c — This tests the strength of association of the cross tabulations when both variables are measured at the ordinal level. It makes adjustments for ties and is most suitable for rectangular tables. Values range from −1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.

Example

Suppose we rank a group of eight people by height and by weight where person A is tallest and third-heaviest, and so on:

Person A B C D E F G H
Rank by Height 1 2 3 4 5 6 7 8
Rank by Weight 3 4 1 2 5 7 8 6

We see that there is some correlation between the two rankings but the correlation is far from perfect. We can use the Kendall tau coefficient to objectively measure the degree of correspondence.

Notice in the Weight ranking above that the first entry, 3, has seven other elements to its right (4,1,2,5,7,8,6). How many of these elements are also to the right of 3 in the other ranking?
The elements to the right of 3 in the Height ranking are: 4,5,6,7,8, so the number of elements to the right of 3 in both rankings is 5 (they are 4,5,6,7,8) and so the contribution to P of this entry is 5.
Moving to the second entry, 4, we see that there are six elements to the right of it. Among these elements those that are to the right of 4 also in the other ranking are four (5,6,7,8), so the contribution to P is 4. Continuing this way, we find that

P = 5 + 4 + 5 + 4 + 3 + 1 + 0 + 0 = 22.

Thus . This result indicates a strong agreement between the rankings, as expected.

See also

  • 等级相关系数
  • 相关系数
  • Spearman's rank correlation coefficient(Spearman等级相关)

References

  • (2007) Kendall rank correlation. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage.
  • Kruskal, W.H. (1958) "Ordinal Measures of Association", Journal of the American Statistical Association, 53(284), 814-861.
  • Kendall, M. (1948) Rank Correlation Methods, Charles Griffin & Company Limited
  • Kendall, M. (1938) "A New Measure of Rank Correlation", Biometrika, 30, 81-89.

External links

  • Why Kendall tau?
  • Online software: computes Kendall's tau rank correlation
郑重声明:东方财富网发布此信息的目的在于传播更多信息,与本站立场无关。东方财富网不保证该信息(包含但不限于文字、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关信息并未经过本网站证实,不对您构成任何投资建议,据此操作,风险自担。

扫一扫下载APP

扫一扫下载APP
信息网络传播视听节目许可证:0908328号 经营证券期货业务许可证编号:913101046312860336 违法和不良信息举报:021-61278686 举报邮箱:jubao@eastmoney.com
沪ICP证:沪B2-20070217 网站备案号:沪ICP备05006054号-11 沪公网安备 31010402000120号 版权所有:东方财富网 意见与建议:4000300059/952500